



DELHI UNIVERSITY 2020 PHYSICS

An Institute for IIT-JAM, GATE, JEST, TIFR CUET Entrance in Physics Physical Sciences Vipin Garden, Dwarka Mor, New Delhi -110016 Phone: +91 73765 08317 Website:www.niteshphyzics.com | Email:niteshphyzics@gmail.com



An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR CUET Entrance in Physics Physical Sciences New Delhi

September 26, 2022



NiteshPt

 An atomic transition line with a wavelength 350 nm is observed to be split into three components in a spectrum of light from a sunspot. Adjacent components are separated by 1.7 pm. Determine the strength of the magnetic field in the sunspot

A. 3T B. 0.03T C. 3.3T D. 0.3T ✔

- 2. Which one of the following is correct in respect of an electron and a proton having a same de-Broglie wavelength of 2Å
  - A. Both have the same kinetic energy
  - B. Both have the same velocity
  - C. Both have the same momentum  $\checkmark$
  - D. The kinetic energy of the proton is more than that of the electron.
- 3. If  $r_p$  and  $r_H$  are the radius and  $E_p$  and  $E_H$  are the energy of an electron in the  $n^{th}$  orbit of positronium atom and hydrogen atom respectively, then
  - A.  $r_p = 2r_H$  and  $E_p = E_H/2$
  - B.  $r_p = 2r_H$  and  $E_p = 2E_H$
  - C.  $r_p = 2r_H$  and  $E_p = E_H/4$
  - D.  $r_p = r_H$  and  $E_p = 2E_H$
- 4. An X ray beam of wavelength 0.16 nm is incident on a set of planes of a certain crystal. The first Bragg reflection is observed for an incidence angle of 30<sup>o</sup>. What is the corresponding interplanar spacing?
  - A. 0.16nm 🖌 B. 0.67 nm C. 1.02 nm D. 0.89 nm
- 5. What is the velocity of conduction electron of silver having Fermi energy 5.52eV A.  $1.39 \times 10^6 m/s$   $\checkmark$  B.  $2.39 \times 10^6 m/s$  C.  $0.89 \times 10^6 m/s$  D. 0
- 6. Given that a piece of n type silicon contains  $8 \times 10^{21} m^{-3}$  phosphorus impurity atoms, calculate the carrier concentration of silicon at room temperature. Given that the intrinsic electron concentration of silicon at room temperature is  $1.6 \times 10^{16}$ 
  - A.  $3.2 \times 10^{10}$  V B.  $2.3 \times 10^{11}$  C.  $1.5 \times 10^{10}$  D.  $3.2 \times 10^{11}$

An Institute for IIT-JAM, GATE, JEST, TIFR CUET Entrance in Physics Physical Sciences Vipin Garden, Dwarka Mor, New Delhi -110016 Phone: +91 73765 08317 Website:www.niteshphyzics.com | Email:niteshphyzics@gmail.com

litesh P



Niteshph

7. The dispersion relation for a one-dimensional mono-atomic lattice chain is given by the equation  $\omega = \frac{2}{a} v_s \left| sin \frac{ka}{2} \right|$ , where, 'a' is the inter-atomic spacing,  $K = \frac{2\pi}{\lambda}$  and  $v_s$  has the dimension of velocity. The relation between the phase velocity  $V_P$  and group velocity  $V_g$  in the long wavelength limit is given by

A.  $v_p = v_g \checkmark$  B.  $v_p = 2v_g$  C.  $v_p = v_g/2$  D.  $v_p \neq v_g$ 

- 8. The largest wavelength of light falling on double slits separated by  $1.5\mu m$ , for which there is a first-order maximum is in the
  - A. ultraviolet range B. visible range C. infrared range  $\checkmark$  D. X-ray range
- 9. In a multi-stage R C coupled amplifier, the coupling capacitor
  - A. limits the low-frequency response
  - B. limits the high-frequency response
  - C. reduces the amplitude of input signal
  - D. blocks d.c. component without affecting the frequency response 🗸
- 10. An AM transmitter is coupled to an aerial. The input current is found to be 5A. With modulation, the current value increases to 5.9 A. The depth of modulation is
  A. 83.4 % B. 88.6 % ✓ C. 78.2 % D. 74.3 %
- Hexadecimal equivalent of a digital number 10011101 is
   A. H913 B. 9D ✓ C. AE D. 157
- 12. If the doping concentration in a Si Zener diode is increased, the Zener breakdown voltageA. Decrease ✓ B. Increase C. Remains unchanged D. Becomes broader
- 13. Which one of the following is an example of doubly magic nuclei? A. <sup>18</sup>O B. <sup>48</sup>Ca  $\checkmark$  C. <sup>124</sup>Sn D. <sup>204</sup>Pb
- 14. Which radiation has maximum ionization power?A. Alpha ✓ B. Beta C. Neutron D. Gamma
- 15. For beta-minus decay, which statement is TRUE?
  - A. Daughter nuclide atomic mass  $(A_D)$  is more than that of the parent nuclide atomic mass  $(A_P)$ .

4

litesh KINA



NiteshPt

- B. Daughter nuclide atomic number  $(Z_D)$  is the same as that of the parent nuclide atomic number  $(Z_P)$ .
- C. Daughter nuclide neutron number  $((N_D))$  is less than that of the parent nuclide neutron number  $(N_P) \checkmark$
- D. Daughter nuclide neutron number  $((N_D))$  is the same as that of the parent nuclide neutron number  $(N_P)$ .
- 16. The probability that student A solves the problem is 1/2, and that of B is 2/3. What is the probability that the problem is solved?
  - A. 4/6 B. 1/3 C. 5/6 ✔ D. none of these
- 17. Are the three points whose position vectors are  $2\vec{i} + \vec{j} 4\vec{k}$ ,  $\vec{i} 2\vec{j} + 3\vec{k}$  and  $-7\vec{j} + 10\vec{k}$  collinear? A. yes  $\checkmark$  B. no C. cannot be determined D. none of these
- 18. The number of independent fundamental solutions in n-th order ordinary differential equation is A. n-1 B. n ✓ C. n+1 D. 2n
  19. If z<sub>1</sub>= 2-3i and z<sub>2</sub>= 4+i6 then find <sup>z<sub>1</sub></sup>/<sub>z<sub>2</sub></sub> is A. -<sup>5</sup>/<sub>26</sub> <sup>6i</sup>/<sub>13</sub> B. -<sup>5</sup>/<sub>26</sub> + <sup>6i</sup>/<sub>52</sub> ✓ C o contact -
- 19. If  $z_1 = 2$ -3i and  $z_2 = 4$ +i6 then find  $\frac{z_1}{z_2}$  is A.  $-\frac{5}{26} - \frac{6i}{13}$  B.  $-\frac{5}{26} + \frac{6i}{13}$  C. 8 + 18i D. 8 + 18i20. The rank of the following matrix  $\begin{bmatrix} 1 & 5 & 1 \\ 2 & 1 & 1 \\ 3 & 6 & 2 \end{bmatrix}$  is A. 1 B. 2  $\checkmark$  C. 3 D. 4
- 21. Two Carnot engines X and Y are operating in series. The engine X receives heat at 1200K and rejects to a reservoir at a temperature of T. The second engine Y receives the heat rejected by X and in turn rejects to a heat reservoir at 300K. Calculate the temperature T(in Kelvin) for the situation when the efficiency of the engines is same.

A. 600K ✔ B. 750K C. 0K D. 450K

22. A square conducting loop of mass m, side l and resistance R is dropped into a region with a uniform horizontal magnetic field B whose direction is perpendicular to the plane of the falling loop. The loop will reach a terminal velocity v given by

A.  $v = \frac{mgR}{(Bl)^2}$  B.  $v = \frac{2mgR}{(Bl)^2}$  C.  $v = \frac{mgR}{2(Bl)^2}$  D. none of these

23. An ideal inductor, a resistor of resistance R Ohms and a capacitor with adjustable capacitance are connected in series to an alternating voltage with an effective value of V Volts and with the

5

litesh P



NiteshPt

frequency of f Hz. The current flowing through the circuit when the capacitance of the capacitor is set to  $C_1$  is the same as when the capacitance of the capacitor is set to  $C_2$ . The inductance of the inductor L is given by

A. 
$$\frac{1}{8\pi^{2}f^{2}} \frac{C_{1}+C_{2}}{C_{1}C_{2}} \checkmark$$
  
B. 
$$\frac{1}{8\pi^{2}f^{2}} \frac{C_{1}C_{2}}{C_{1}+C_{2}}$$
  
C. 
$$\frac{1}{2\pi f} \frac{C_{1}C_{2}}{C_{1}-C_{2}}$$
  
D. 
$$\frac{1}{2\pi^{2}f^{2}(C_{1}-C_{2})} \frac{C_{1}C_{2}}{C_{1}+C_{2}}$$

24. . A cylinder of length L is made up of an inner core of steel of radius  $r_1$  and an outer  $r_1$ . The resistivities of steel and copper are  $\rho_1 \rho_2$  respectively. The total resistance of the cylinder is

A. 
$$\frac{(\rho_1\rho_2)L}{\pi r^2(3\rho_1+\rho_2)}$$
B. 
$$\frac{((3\rho_1+\rho_2)L}{\pi r^2}$$
C. 
$$\frac{(\rho_1+\rho_2)L}{4\pi r^2}$$

D. Cannot be determined from the information provided above

25. A meter stick is at an angle of 45° to the x - axis in its rest frame. The rod moves with a speed of  $\frac{c}{\sqrt{2}}$  along the +x - direction w.r.t. a frame S. The length of the rod in S is

A.  $\frac{\sqrt{3}}{2}$  meter  $\checkmark$  B.  $\frac{\sqrt{5}}{2}$  meter C.  $\frac{\sqrt{2}}{3}$  meter D.  $\frac{3}{2}$  meter

26. An AC generator with output and frequency *f* is connected to the plates of an air filled parallel plate capacitor of plate area *A* and plate separation *d*. The maximum value of the displacement current is

A. 
$$\frac{2\pi\varepsilon_0 f VA}{d} \checkmark$$
  
B. 
$$\frac{\varepsilon_0 f VA}{d}$$
  
C. 
$$\frac{2\pi\varepsilon_0 fA}{Vd}$$

- D. Cannot be determined from the information provided above
- 27. An electron enters a uniform magnetic field of flux density  $1.2Wb/m^2$ . Find the energy difference in (eV), between electrons having spins parallel and anti-parallel to the field. (Given: $\mu_B = 9.3 \times 10^{-24}$ )
  - A.  $3.95 \times 10^{-5} \text{ eV}$  B.  $13.95 \times 10^{-5} \text{ eV}$  C.  $23.95 \times 10^{-5} \text{ eV}$  D.  $33.95 \times 10^{-5} \text{ eV}$

An Institute for IIT-JAM, GATE, JEST, TIFR CUET Entrance in Physics Physical Sciences Vipin Garden, Dwarka Mor, New Delhi -110016 Phone: +91 73765 08317 Website:www.niteshphyzics.com | Email:niteshphyzics@gmail.com

#### 6

shphylic

litesh P



litesh ruy

7

## Nitesh Phyzics

Niteshph

- 28. Using the vector atom model, determine the possible values of the angular momentum of an electron in f shell
- A.  $\frac{3\sqrt{7}}{2}\hbar$ ,  $\frac{\sqrt{35}}{2}\hbar$   $\checkmark$  B.  $\frac{2\sqrt{7}}{2}\hbar$ ,  $\frac{\sqrt{25}}{2}\hbar$  C.  $\frac{5\sqrt{7}}{2}\hbar$ ,  $\frac{\sqrt{15}}{2}\hbar$  D.  $\frac{\sqrt{7}}{2}\hbar$ ,  $\frac{\sqrt{5}}{2}\hbar$ 29. The two eigenvalues of the matrix  $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 
  - A. 2,0 🖌 B. 1,1 C. 1,2 D. 0,1
- 30. The commutator,  $\pi[x^2, p_x]$ , is equal to A. *ihx*  $\checkmark$  B. 2*ihx* C. *ihp*<sub>x</sub> D. 0
- 31. A particle of mass m is confined in the ground state of a one dimensional box extending from x=-2L to x=+2L. The wave function of the particle in this state is  $psi(x) = \psi_0 cos\left(\frac{\pi x}{4L}\right)$ , where  $\psi_o$  is a constant. The energy eigenvalue corresponding to this state is A.  $\frac{\hbar^2 \pi^2}{32mL^2}$  **V** B.  $\frac{\hbar^2 \pi^2}{2mL^2}$  C.  $\frac{\hbar^2 \pi^2}{4mL^2}$  D.  $\frac{\hbar^2 \pi^2}{16mL^2}$
- 32. The normalized wave functions *psi*<sub>1</sub> and *psi*<sub>2</sub>, correspond to the ground state and the first excited states of particle in a potential. The operator acts on the wave functions as Âψ<sub>1</sub> = ψ<sub>2</sub> and Âψ<sub>2</sub> = ψ<sub>1</sub> The expectation value of the operator for the state ψ = (3ψ<sub>1</sub> + 4ψ<sub>2</sub>)/5 is
  A. 0.96 ✓ B. -0.32 C. 0 D. 0.75
- 33. The primitive translation vector of a two-dimensional lattice are a = 2i + j, b = 2j The primitive translation vector of its reciprocal lattice in x direction is given by
  A. a\* = πi ✓ B. a\* = 2πi C. a\* = i D. a\* = πj
- 34. The mean drift speed  $v_d$  of an electron in an applied electric field E with electron density 'n' can be expressed as

A.  $v_d = |\frac{\sigma E}{ne}| \checkmark$  B.  $v_d = |\frac{\sigma E}{e}|$  C.  $v_d = |\frac{\sigma e}{nE}|$  D. None of these

35. An un-damped oscillator has time period  $\tau_o = 1.0$  sec. Now a little damping is added so that its time period changes to  $\tau_1 = 1.001$  sec. By what factor will the amplitude of oscillation decrease after 10 cycles?

A. 
$$\approx 17 \checkmark$$
 B.  $\approx 1$  C.  $\approx \frac{1}{17}$  D. None of these

36. A kilogram of water has a constant heat capacity of 4.2kJ/K/kg over the temperature range  $0^{o}C$  to  $100^{o}C$ . The water was initially at  $0^{o}C$  and is brought into contact with a heat reservoir at  $100^{o}C$  When the water is in thermal equilibrium with the heat reservoir, calculate the change in entropy



Niteshphi

of the universe (Water + Reservoir). A. 184.8*J*/*K* ✓ B. 2437.8*J*/*K* C. 0*J*/*K* D. 1310.8*J*/*K* 

37. Two identical finite bodies of constant volume and of constant heat capacity at constant volume  $C_V$ , are used to drive a heat engine. Their initial temperatures are  $T_1$  and  $T_2$ . The maximum amount of work which can be obtained from the system is

A.  $C_V(2(T_1T_2)^{1/2} - (T_1 + T_2))$ B.  $C_V(T_1 + T_2)$ C.  $C_V(T_1T_2)^{1/2}$ D. 0

38. For a system of bosons, we can write the Bose-Einstein distribution function as  $f(E_i) = \frac{1}{exp(a+\beta E_i)-1}$ , where  $\beta = \frac{1}{K_B T}$  and  $\alpha = \frac{\mu}{K_B T}$  ( $K_B$  is Boltzmann constant). If  $\mu$  represents the chemical potential, then which one of the following is true?

A.  $\mu \le 0$  B.  $\mu \ge 0 \checkmark$  C.  $\mu \le 1$  D.  $\mu \ge 1$ 

39. An ideal capacitor C is charged to a voltage  $V_o$  and connected at t = 0 across an ideal inductor L (The circuit now consists of a capacitor and an inductor only). If the resonant frequency  $\omega_0 = \frac{1}{\sqrt{LC}}$  the voltage across the capacitor at time t > 0 is given by

A.  $V_o$  B.  $V_o cos(\omega_o t) \checkmark$  C.  $V_o sin(\omega_o t)$  D.  $V_o e^{-\omega_o t} cos(\omega_o t)$ 

- 40. Magnetic moment of proton  $(\mu_p)$  in terms of nuclear magneton  $(\mu_N)$  is A.  $\mu_p = 1.9\mu_N$  B.  $\mu_p = 2.7\mu_N \checkmark$  C.  $\mu_p = 3.8\mu_N$  D.  $\mu_p = 5.4\mu_N$
- 41. Find the eigenvalues of A + 4I, where I is identity matrix and A  $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ A. 1,3 B. 5,7  $\checkmark$  C. 4,4 D. none of these
- 42. The limit

$$\lim_{x\to\infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}$$

is  
A. 
$$\frac{1}{e}$$
 B. 1  $\checkmark$  C. 0 D.  $e$   
43.  $\left(\frac{1+i}{\sqrt{2}}\right)^{49}$  is equal to  
A.  $\left(\frac{1+i}{\sqrt{2}}\right) \checkmark$  B.  $\left(\frac{2+98i}{\sqrt{2^{49}}}\right)$  C.  $\left(\frac{1-i}{\sqrt{2}}\right)$  D.  $\left(\frac{2-98i}{\sqrt{2^{49}}}\right)$ 

An Institute for IIT-JAM, GATE, JEST, TIFR CUET Entrance in Physics Physical Sciences Vipin Garden, Dwarka Mor, New Delhi -110016 Phone: +91 73765 08317 Website:www.niteshphyzics.com | Email:niteshphyzics@gmail.com

Litesh Prive



Niteshriny

9

NiteshPhylic

### **Nitesh Phyzics**

NiteshPt

- 44.  $sin(\frac{\pi}{4}+i)$  is equal to
  - A.  $\frac{\sqrt{2}}{4}(e \frac{1}{e}) + \frac{\sqrt{2}}{4}(e \frac{1}{e})i$ B.  $\frac{\sqrt{2}}{4}(e + \frac{1}{e}) + \frac{\sqrt{2}}{4}(e - \frac{1}{e})i$ C.  $\frac{\sqrt{2}}{4}(e + \frac{1}{e}) + \frac{\sqrt{2}}{4}(e + \frac{1}{e})i$ D.  $\frac{\sqrt{2}}{4}(e - \frac{1}{e}) + \frac{\sqrt{2}}{4}(e + \frac{1}{e})i$
- 45. Two students are working on a math problem. The first student has probability  $\frac{1}{2}$  of solving it and the second student has probability  $\frac{3}{4}$  of solving it. What is the probability that at least one of them solves the problem?
  - A.  $\frac{3}{8}$  B.  $\frac{5}{8}$  C.  $\frac{7}{8}$   $\checkmark$  D.  $\frac{9}{8}$
- 46. Expansion of the function  $f(z) = \frac{1}{z^2 3z + 2}$  in the region defined by z > 2 is

| A. $z^{-2}$ | + | $3z^{-4}$ | + | $7z^{-6} + \dots$ |
|-------------|---|-----------|---|-------------------|
| B. $z^{-2}$ | + | $3z^{-3}$ | + | $7z^{-4} + \dots$ |
| C. $z^{-1}$ | + | $3z^{-2}$ | + | $7z^{-3} + \dots$ |
| D. $z^{-3}$ | + | $3z^{-4}$ | + | $7z^{-5} + \dots$ |

47. The Fourier transformation of the function for

$$f(x) = \begin{cases} 1 & |x| < a \\ 0 & |x| > a \end{cases}$$

is

Jitesh

A. 
$$\sqrt{\frac{2}{\pi}} \frac{\sin sa}{s} \checkmark$$
 B.  $\sqrt{\frac{2}{\pi}} \frac{\cos sa}{s}$  C.  $\sqrt{\frac{pi}{s}} \frac{\sin sa}{s}$  D.  $\sqrt{\frac{\pi}{2}} \frac{\cos sa}{s}$ 

- 48. The Laplace transformation of the function  $f(t) = 2^t$ A.  $\frac{ln2}{s-ln2}$  B.  $\frac{1}{s-ln2}$   $\checkmark$  C.  $\frac{1}{sln2-1}$  D.  $\frac{ln2}{sln2-1}$
- 49. Consider a collection of non-interacting particles, each of mass m in a volume where the gravitational force is a negative (z-direction). Consider the system is in thermal equilibrium at a temperature T. Find the partition function

A. 
$$Q_N = \left[\frac{(KT)^3}{2\pi mg\hbar^2}\right]^{N/2}$$
 B.  $Q_N = \left[\frac{(KT)^3}{2\pi mg\hbar^2}\right]^{N/2}$  C.  $Q_N = \left[\frac{(KT)^3}{2\pi mg\hbar^2}\right]^N$  D.  $Q_N = \left[\frac{(\pi mg\hbar^2)^2}{(KT)^3}\right]^N$ 



itesh Phys

Niteshriny

10

## **Nitesh Phyzics**

Niteshriny

50. The quantum distribution function for any gas atom which follows MB, BE, and FD statistics is given as a generalized single form

$$f_i = \frac{g_i}{exp(\varepsilon_i - \mu)/(kT + J)}$$

If the distribution function follows the MB statistics in a classical limit then what will be the condition of the following? Symbols have their usual meanings

A.  $\frac{f_i}{g_i} = 1; J = 1$  B.  $\frac{f_i}{g_i} = 1; J = 0$   $\checkmark$  C.  $\frac{g_i}{f_i} = 1; J = 1$  D.  $\frac{g_i}{f_i} = 1; J = -1$ 

